Humane AI Net Legacy
This page summarizes some of our key resources produced during the project.
Core Data
- Humane AI Website: https://www.humane-ai.eu/
- Humane AI Database: a living document spreadsheet summarizing key project outputs (view sheet)
- AI on Demand: coming soon
Core Legacy Items
- HHAI conference (Hybrid Human Artificial Intelligence): https://hhai-conference.org/
- ADR Topic Group – Generative AI for Human-AI Collaboration: coming soon
- Springer handbook on Human-AI Collaboration: coming soon (email haimgmt@dfki.de if you are interested to collaborate 🙂 )
Social Media
- Linkedin (@humaneainet): https://www.linkedin.com/company/90859893/
- Facebook (@humaneainet): https://www.facebook.com/profile.php?id=100089945357753
- Twitter (@humaneainet): https://twitter.com/humaneainet
- YouTube (@humaneainet): https://www.youtube.com/channel/UCyT8rfuCFHLK3ha1-GdE9Zg
Datasets
ID | Microproject producing the dataset (linked to HAI Net page) | Description | Link short text |
DS-001 | TMP-003 | Available on github | link |
DS-002 | TMP-007 | Reviewed Papers and Coding Spreadsheet: | link |
DS-003 | TMP-016 | (Dataset 1) Example Jupyter Notebooks – Uwe Köckemann, Fabrizio Detassis, Michele Lombardi | link |
DS-004 | TMP-016 | (Dataset 2) Example Jupyter Notebooks – Uwe Köckemann, Fabrizio Detassis, Michele Lombardi | link |
DS-005 | TMP-016 | (Dataset 3) Example Jupyter Notebooks – Uwe Köckemann, Fabrizio Detassis, Michele Lombardi | link |
DS-006 | TMP-022 | Dataset: Pilot dataset – Kunal Gupta & Mark Billinghurst | link |
DS-007 | TMP-022 | Dataset: eye tracking data during encoding phase | link |
DS-008 | TMP-023 | The SOMTUME dataset contains textual information gathered from social media and news sites, segment: Trustworthiness Information Content (TIC). The texts pertain to the migration of Ukrainians to the European Union from February 2022, to August 2023 | link |
DS-009 | TMP-023 | The SOMTUME dataset contains textual information gathered from social media and news sites, segment: Trustworthiness Uncertain Information Content (UIC). The texts pertain to the migration of Ukrainians to the European Union from February 2022, to August 2023 | link |
DS-010 | TMP-036 | Dataset: DIASER corpus – Ondrej Dusek: A corpus of 37,173 annotated dialogues with unified and enhanced annotations built from existing open dialogue resources | link |
DS-011 | TMP-037 | Loan Approval1: datase | link |
DS-012 | TMP-037 | Loan Approval2: dataset | link |
DS-013 | TMP-039 | Dataset: PEEK Dataset – Sahan Bulathwela | link |
DS-014 | TMP-059 | A unified multi-domain dialogue dataset is introduced and released along with the paper “Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction” (Burdisso et al. – EMNLP 2024 main conference). | link |
DS-015 | TMP-060 | A list of relevant datasets | link |
DS-016 | TMP-060 | Survey showing Point Processes resources | link |
DS-017 | TMP-062 | Github repository of datasets and software | link |
DS-018 | TMP-068 | PET: a new annotated dataset of human-annotated processes in a corpus of process descriptions | link |
DS-019 | TMP-081 | evaluation and development data sets for speech translation for meetings (for English->Latvian, Latvian->English, and Lithuanian- >English) | link |
DS-020 | TMP-081 | ELITIR minuting cortpus: an automatic minuting test set for the AutoMin 2023 shared task on automatic creation of meeting summaries (“minutes”) for English and Czech | link |
DS-021 | TMP-084 | SynSemClass 3.5 dataset | link |
DS-022 | TMP-086 | A survey of tools and datasets for a multimodal perception with transformers | link |
DS-023 | TMP-091 | Data | link |
DS-024 | TMP-094 | Generator for preference data – Bruno Veloso, Luciano Caroprese, Matthias Konig, Sonia Teixeira, Giuseppe Manco, Holger H. Hoos, and Joao Gama | link |
DS-025 | TMP-096 | Dataset without topics | link |
DS-026 | TMP-096 | Dataset with topics | link |
DS-027 | TMP-099 | Individual subject trajectories – Annalisa Bosco | link |
DS-028 | TMP-102 | A GitHub repository with detailed analysis of literature Detailed analysis of containing 36 existing datasets and papers according to our desiderata and checklist | link |
DS-029 | TMP-103 | Data can be found here | link |
DS-030 | TMP-107 | HCN dataset: news articles in the domain of Health and Climate Change. The dataset contains news articles, annotated with the major claim, claimer(s) and claim object(s). | link |
DS-031 | TMP-117 | Dataset of EEG recordings corresponding to easy and difficult decisions | link |
DS-032 | TMP-118 | 3 etxnsions of the HeLiS ontology – Mauro Dragoni | link |
DS-033 | TMP-124 | dataset showing the evaluated VAAs and the frameworks used to evaluate them | link |
DS-034 | TMP-130 | we have a cleared and cured dataset for 70 years of Senate activities from year 1333 | link |
Software and Tools
ID | Microproject producing the dataset (linked to HAI Net page) | Description | Link short text |
TL-001 | TMP-001 | labelling tool repository | link |
TL-002 | TMP-003 | This repository contains the implementation of the model presented in the paper “Modelling Concept Drift in Dynamic Data Streams for Recommender Systems”. | link |
TL-003 | TMP-004 | C# code to run for the geometry friends human-ai collaboration study. | link |
TL-004 | TMP-005 | The code of the ABM can be found in this repository | link |
TL-005 | TMP-008 | Program/code: Crowdnalysis Python package | link |
TL-006 | TMP-009 | Interpretable Fair Abstaining Classifier | link |
TL-007 | TMP-010 | chatbot code | link |
TL-008 | TMP-012 | Open source tool for training ASR models for dysarthic speech: The repository contains: A baseline recipe to train a TDNN-CNN hybrid model based ASR system, this recipe is prepared to be trained on the TORGO dataset. And an end-to-end model using ESPnet framework prepared to be trained on UASpeech dataset. | link |
TL-009 | TMP-016 | Program/code: Python library: Moving targets via AIDDL | link |
TL-010 | TMP-018 | Mass Media Impact on Opinion Evolution in Biased Digital Environments: a Bounded Confidence Model | link |
TL-011 | TMP-025 | Methods and Tools for Causal Discovery and Causal Inference | link |
TL-012 | TMP-031 | Meta-control decision-making experiment | link |
TL-013 | TMP-037 | Discovery Framework (program/code) | link |
TL-014 | TMP-037 | 2Experiments | link |
TL-015 | TMP-039 | Program/code: TrueLearn Model | link |
TL-016 | TMP-039 | Program/code: Semantic Networks for Narratives | link |
TL-017 | TMP-044 | EvalSubtitle: tool for reference-based evaluation of subtitle segmentation | link |
TL-018 | TMP-051 | Backend code | link |
TL-019 | TMP-053 | patent under review for FPGA based prototype | link |
TL-020 | TMP-055 | The base game | link |
TL-021 | TMP-055 | The extended game | link |
TL-022 | TMP-057 | python package providing grey box NLP model to assist qualitative analysts | link |
TL-023 | TMP-058 | Package page at Python Package Index | link |
TL-024 | TMP-059 | Source code comes with tool-like scripts to convert any collection of dialogs to a dialog flow automatically. | link |
TL-025 | TMP-059 | The code repository for long-context ASR is public | link |
TL-026 | TMP-065 | A software library to help analyze crowdsourcing results (2024) | link |
TL-027 | TMP-071 | Web-Services library | link |
TL-028 | TMP-082 | Prototype implementation | link |
TL-029 | TMP-083 | T-KEIR | link |
TL-030 | TMP-083 | erc-unibo-module | link |
TL-031 | TMP-084 | SynSemClass 3.5 browser | link |
TL-032 | TMP-089 | A bundle to replicate a simulation with SUMO over Milano with 15k vehicles and 40% routed ones | link |
TL-033 | TMP-090 | dataset | link |
TL-034 | TMP-091 | Implementation in Pytorch of the Iterative Local Refinement (ILR) algorithm | link |
TL-035 | TMP-094 | Self Hyper-parameter tunning | link |
TL-036 | TMP-095 | Contributed to a computational theory called POSG, a multi-agent framework for human-AI interaction | link |
TL-037 | TMP-096 | repo with the code used to build and study the datasets | link |
TL-038 | TMP-097 | Github link of the code of the simulator for the new dynamic model | link |
TL-039 | TMP-099 | Program/code: Recurrent neural network codes | link |
TL-040 | TMP-101 | Program/code: Proactive Behavior Generation – Open Source System – | link |
TL-041 | TMP-101 | Program/code: Playground, Jupyter Notebook / Google Colab | link |
TL-042 | TMP-104 | CKR Datalog Rewriter | link |
TL-043 | TMP-107 | Website demo | link |
TL-044 | TMP-107 | Services for claim identification and the retrieval engine | link |
TL-045 | TMP-107 | Service for the text simplification | link |
TL-046 | TMP-108-TMP-034 | SAI Simulator for Social AI Gossiping | link |
TL-047 | TMP-109 | Pest control game demo | link |
TL-048 | TMP-109 | The Pest Control Game experimental platform | link |
TL-049 | TMP-113 | Prototype of a dialogue system that deliberates on top of the social context, in which the dialogue scenarios are easy to author. | link |
TL-050 | TMP-114 | prototype | link |
TL-051 | TMP-120 | Diurnal Patterns in the Spread of COVID-19 Misinformation on Twitter within Italy | link |
TL-052 | TMP-124 | Trustworthiness of Voting Advice Applications in Europe | link |
TL-053 | TMP-126 | Code for audio data collection | link |
TL-054 | TMP-126 | Code for end-to-end response generation | link |
TL-055 | TMP-130 | VLD Series Viewer | link |
TL-056 | TMP-133 | X5Learn Platform | link |
TL-057 | TMP-133 | TrueLearn Codebase | link |
TL-058 | TMP-133 | TrueLearn Python library | link |
Tutorials and Reports
ID | Microproject producing the dataset (linked to HAI Net page) | Description | Link |
TR-001 | TMP-016 | Tutorial: Moving targets tutorial | link |
TR-002 | TMP-038 | EduCourse: Open lectures and hands-on practicals | link |
TR-003 | TMP-042 | Seminar: Research seminar: Ethics and AI for PhD students, postdoctoral scholars, and research fellows in University of Kaiserslautern-Landau (Winter 2023-2024) | Reach out to project contact person for access |
TR-004 | TMP-058 | Tutorial: “tutorial page documenting how to use the package | link |
TR-005 | TMP-059 | Tutorial: a jupyter notebook tutorial for joint speech-text embeddings for spoken language understanding. | link |
TR-006 | TMP-059 | Tutorial: part 1 (on dialogue modelling) | link |
TR-007 | TMP-059 | Tutorial: part 2 (on LLMs) | link |
TR-008 | TMP-082 | Report: ArXiv Technical Report on formalization | link |
TR-009 | TMP-086 | Tutorial: A tutorial on the use of transformers for multimodal perception. | link |
TR-010 | TMP-086 | Report: Report on challenges for the use of transformers for multimodal perception and interaction. | link |
TR-011 | TMP-096 | Report: report summarizing the detailed results | link |
TR-012 | TMP-103 | A pre-registration for the demographic study | link |
TR-013 | TMP-104 | Report: echnical report | link |
TR-014 | TMP-121 | Seminar: the Mossos d’Esquadra, the police authority in Barcelona. |
Reach out to project contact person for access
|
TR-015 | TMP-121 | Seminar: the police education unit at Umeå Sweden. |
Reach out to project contact person for access
|
TR-016 | TMP-123 | Report: Report of applicable mechanisms and formats for AI-innovation Report of the initial workshop | link |
TR-017 | TMP-123 | Report: White Paper – Methods for AI implementation | link |
TR-018 | TMP-126 | Report: Report for end-to-end response generation | link |
TR-019 | TMP-131 | EduCourse: slides | link |